In 1997 the parapets and timber decking of the pylons cast iron, each with four fluted Corinthian columns almost 6 metres high. Its construction was promoted by engineer George Melvin. The chains and deck are wrought iron, keen to develop, and in 1905 the ‘New Clyde Viaduct’ was opened alongside the first bridge, giving a total of 13 tracks across the Clyde.

John Wolfe Barry

15 St Andrew’s Suspension Bridge - 1853

Engineer: Donald A. Matheson & Sir William Melville

Engineer: Blyth & Cunningham

1st Dalmarnock Railway Bridge - 1861

Engineer: George Goodman

In 1850 the great world powers were at the foot of Oswald Street in 1915 but was delayed for construction for 10 years, and eventually opened in 1925. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

George the Fifth Bridge - 1925

Engineer: Crouch & Hogg

The bridge was completed in 2006 and cost £75,000. The River Clyde at this location. Evidence of the widening can be seen in the girder spacing and the construction joints in the piers. The City Union Railway Bridge had been planned to be built at the foot of Oswald Street in 1898 but was delayed for construction for 10 years, and eventually opened in 1905. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Goodman

In 1850 the great world powers were at the foot of Oswald Street in 1915 but was delayed for construction for 10 years, and eventually opened in 1925. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

George the Fifth Bridge - 1925

Engineer: Crouch & Hogg

The bridge was completed in 2006 and cost £75,000. The River Clyde at this location. Evidence of the widening can be seen in the girder spacing and the construction joints in the piers. The City Union Railway Bridge had been planned to be built at the foot of Oswald Street in 1898 but was delayed for construction for 10 years, and eventually opened in 1905. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Goodman

In 1850 the great world powers were at the foot of Oswald Street in 1915 but was delayed for construction for 10 years, and eventually opened in 1925. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

George the Fifth Bridge - 1925

Engineer: Crouch & Hogg

The bridge was completed in 2006 and cost £75,000. The River Clyde at this location. Evidence of the widening can be seen in the girder spacing and the construction joints in the piers. The City Union Railway Bridge had been planned to be built at the foot of Oswald Street in 1898 but was delayed for construction for 10 years, and eventually opened in 1905. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Goodman

In 1850 the great world powers were at the foot of Oswald Street in 1915 but was delayed for construction for 10 years, and eventually opened in 1925. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

George the Fifth Bridge - 1925

Engineer: Crouch & Hogg

The bridge was completed in 2006 and cost £75,000. The River Clyde at this location. Evidence of the widening can be seen in the girder spacing and the construction joints in the piers. The City Union Railway Bridge had been planned to be built at the foot of Oswald Street in 1898 but was delayed for construction for 10 years, and eventually opened in 1905. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Goodman

In 1850 the great world powers were at the foot of Oswald Street in 1915 but was delayed for construction for 10 years, and eventually opened in 1925. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

George the Fifth Bridge - 1925

Engineer: Crouch & Hogg

The bridge was completed in 2006 and cost £75,000. The River Clyde at this location. Evidence of the widening can be seen in the girder spacing and the construction joints in the piers. The City Union Railway Bridge had been planned to be built at the foot of Oswald Street in 1898 but was delayed for construction for 10 years, and eventually opened in 1905. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Goodman

In 1850 the great world powers were at the foot of Oswald Street in 1915 but was delayed for construction for 10 years, and eventually opened in 1925. Although the bridge appears to be a three span girder bridge, it is actually a five span girder bridge, each span of 27.5 meters.
The story of Glasgow's Clyde Bridges in many ways reflects the development of Glasgow. Glasgow may not have grown beyond a quiet monastery town had it not also been the lowest fordable point on the Clyde. As the city flourished in the 18th and 19th centuries, the demands for better communications resulted in bridges being built, which, in turn, encouraged further trade and prosperity. So bridges both nurtured and reflected the growth of the city.

It also reflects the story of civil engineering. Developments in engineering materials and knowledge can be traced in the techniques used to construct the Clyde bridges. Timber and stone, cast iron, wrought iron, and steel, reinforced and pre-stressed concrete, were all used in Glasgow's Clyde bridges. Virtually all bridge types are represented on the Clyde: the beam, beam and slab (with solid girders, lattice girders or box girders), the arch, the tied bowstring arch, the suspension bridge, the cable stayed bridge and the balanced caisson bridge. A walk from the Millennium Bridge to Dalmarnock Bridge will take you past exhibits of more than 150 years of bridge engineering history.

Glasgow's Clyde Bridges

Reflecting on Glasgow's Clyde Bridges

The story of Glasgow's Clyde Bridges in many ways reflects the development of Glasgow. Glasgow may not have grown beyond a quiet monastery town had it not also been the lowest fordable point on the Clyde. As the city flourished in the 18th and 19th centuries, the demands for better communications resulted in bridges being built which, in turn, encouraged further trade and prosperity. So bridges both nurtured and reflected the growth of the city.

The story of Glasgow's bridges also reflects the story of transportation, from the pedestrian and horse traffic of the middle ages, through railway mania in the 19th century, and the 20th century age of the motor car, onwards into the new millennium.

It also reflects the story of civil engineering. Developments in engineering materials and knowledge can be traced in the techniques used to construct the Clyde bridges. Timber and stone, cast iron, wrought iron and steel, reinforced and pre-stressed concrete, were all used in Glasgow's Clyde bridges. Virtually all bridge types are represented on the Clyde: the beam, beam and slab (with solid girders, lattice girders or box girders), the arch, the tied bowstring arch, the suspension bridge, the cable stayed bridge and the balanced caisson bridge. A walk from the Millennium Bridge to Dalmarnock Bridge will take you past exhibits of more than 150 years of bridge engineering history.

ABOUT THE HERITAGE TRAIL

- Approximately 2½ hours should be allowed for the walk from Millennium Bridge to Dalmarnock Bridge.
- Trains run between Dalmarnock Station and Exhibition Station approximately every 15 minutes.
- The trail is waymarked by the symbol.